Algorithm Instance Games

نویسندگان

  • Samuel D. Johnson
  • Tsai-Ching Lu
چکیده

This paper introduces algorithm instance games (AIGs) as a conceptual classification applying to games in which outcomes are resolved from joint strategies algorithmically. For such games, a fundamental question asks: How do the details of the algorithm’s description influence agents’ strategic behavior? We analyze two versions of an AIG based on the set-cover optimization problem. In these games, joint strategies correspond to instances of the set-cover problem, with each subset (of a given universe of elements) representing the strategy of a single agent. Outcomes are covers computed from the joint strategies by a set-cover algorithm. In one variant of this game, outcomes are computed by a deterministic greedy algorithm, and the other variant utilizes a non-deterministic form of the greedy algorithm. We characterize Nash equilibrium strategies for both versions of the game, finding that agents’ strategies can vary considerably between the two settings. In particular, we find that the version of the game based on the deterministic algorithm only admits Nash equilibrium in which agents choose strategies (i.e., subsets) containing at most one element, with no two agents picking the same element. On the other hand, in the version of the game based on the non-deterministic algorithm, Nash equilibrium strategies can include agents with zero, one, or every element, and the same element can appear in the strategies of multiple agents.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How to Play Unique Games against a Semi-Random Adversary

In this paper, we study the average case complexity of the Unique Games problem. We propose a natural semi-random model, in which a unique game instance is generated in several steps. First an adversary selects a completely satisfiable instance of Unique Games, then she chooses an ε–fraction of all edges, and finally replaces (“corrupts”) the constraints corresponding to these edges with new co...

متن کامل

Combinatorial Simplex Algorithms Can Solve Mean Payoff Games

A combinatorial simplex algorithm is an instance of the simplex method in which the pivoting depends on combinatorial data only. We show that any algorithm of this kind admits a tropical analogue which can be used to solve mean payoff games. Moreover, any combinatorial simplex algorithm with a strongly polynomial complexity (the existence of such an algorithm is open) would provide in this way ...

متن کامل

Performance Evaluation for Modular Games

Complex, ’modular’ games are considered in this paper. It is often useful to solve such games and evaluate the solutions (i.e. algorithms that implement the process of playing the games) with respect to their ’modules’. However, precise criteria of the evaluation aren’t easy to specify for a module that produces no measurable output. In the paper a new methodology for performance evaluation of ...

متن کامل

Unique Games on the Hypercube

In this paper, we investigate the validity of the Unique Games Conjecture when the constraint graph is the boolean hypercube. We construct an almost optimal integrality gap instance on the Hypercube for the Goemans-Williamson semidefinite program (SDP) for Max-2-LIN(Z2). We conjecture that adding triangle inequalities to the SDP provides a polynomial time algorithm to solve Unique Games on the ...

متن کامل

Note on MAX 2SAT

In this note we present an approximation algorithm for MAX 2SAT that given a (1− ε) satisfiable instance finds an assignment of variables satisfying a 1−O( √ ε) fraction of all constraints. This result is optimal assuming the Unique Games Conjecture. The best previously known result, due to Zwick, was 1−O(ε1/3). We believe that the analysis of our algorithm is much simpler than the analysis of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1405.3296  شماره 

صفحات  -

تاریخ انتشار 2014